超碰激情 I 成人福利网站 I 淫国产 I 曰批视频免费30分钟成人 I 刘亦菲裸体视频一区二区三区 I 午夜久 I 尤物综合 I 亚洲一区av在线观看 I 欧美亚洲国产精品久久高清 I 欧美老熟妇乱子伦视频 I 无码中出人妻中文字幕av I 久久美女福利视频 I 精品无人区乱码1区2区3区在线 I 性饥渴的农村熟妇 I 色综合综合色 I 少妇人妻88久久中文字幕 I 久久夜色精品国产噜噜av I 老熟妇仑乱视频一区二区 I 男女做爰猛烈叫床视频动态图 I 日本大片一区二区 I 人成午夜免费视频在线观看 I 激情婷婷av I 男女下面一进一出免费视频网站 I 久久影视一区 I 午夜污网站 I 先锋人妻无码av电影 I 久久久久久久岛国免费网站 I 又粗又大又黄又硬又爽免费看 I 人妻无码免费一区二区三区 I www.色成人100 I 欧美高清网站 I 精品国产第一页 I 国产suv一区二区三区88区 I 橹图极品美女无圣光 I 午夜宅男欧美

產(chǎn)品分類

當(dāng)前位置: 首頁 > 工業(yè)控制產(chǎn)品 > 自動化控制 > 人工智能

類型分類:
科普知識
數(shù)據(jù)分類:
人工智能

人工智能之隨機森林(RF)

發(fā)布日期:2022-10-09 點擊率:103


通過上一篇文章《人工智能之決策樹》,我們清楚地知道決策樹(DT)是一類常見的機器學(xué)習(xí)方法。決策樹(DT)在人工智能中所處的位置:人工智能-->機器學(xué)習(xí)-->監(jiān)督學(xué)習(xí)-->決策樹。決策樹主要用來解決分類和回歸問題,但是決策樹(DT)會產(chǎn)生過擬合現(xiàn)象,導(dǎo)致泛化能力變?nèi)?/strong>。過擬合是建立決策樹模型時面臨的重要挑戰(zhàn)之一。鑒于決策樹容易過擬合的缺點,由美國貝爾實驗室大牛們提出了采用隨機森林(RF)投票機制來改善決策樹。隨機森林(RF)則是針對決策樹(DT)的過擬合問題而提出的一種改進方法,而且隨機森林(RF)是一個最近比較火的算法。因此有必要對隨機森林(RF)作進一步探討^_^

人工智能之隨機森林(RF)

隨機森林(RF)在人工智能中所處的位置:人工智能-->機器學(xué)習(xí)-->監(jiān)督學(xué)習(xí)-->決策樹-->隨機森林

隨機森林(RF)指的是利用多棵樹對樣本進行訓(xùn)練并預(yù)測的一種分類器。該分類器最早由Leo Breiman和Adele Cutler提出,并被注冊成了商標(biāo)。

人工智能之隨機森林(RF)

那么什么是隨機森林?

隨機森林(RandomForests)是一個包含多個決策樹的分類器,并且其輸出的類別是由個別樹輸出的類別的眾數(shù)而定。Leo Breiman和Adele Cutler發(fā)展并推論出隨機森林的算法。隨機森林(RF)這個術(shù)語是1995年由貝爾實驗室的Tin Kam Ho所提出的隨機決策森林(random decision forests)而來的。這個方法則是結(jié)合 Breimans 的 "Bootstrap aggregating" 想法和 Ho 的"random subspace method"以建造決策樹的集合。

人工智能之隨機森林(RF)

通過定義我們知道,隨機森林(RF)要建立了多個決策樹(DT),并將它們合并在一起以獲得更準(zhǔn)確和穩(wěn)定的預(yù)測。隨機森林的一大優(yōu)勢在于它既可用于分類,也可用于回歸問題,這兩類問題恰好構(gòu)成了當(dāng)前的大多數(shù)機器學(xué)習(xí)系統(tǒng)所需要面對的。

隨機森林是集成學(xué)習(xí)的一個子類,它依靠于決策樹的投票選擇來決定最后的分類結(jié)果。集成學(xué)習(xí)通過建立幾個模型組合的來解決單一預(yù)測問題。集成學(xué)習(xí)的簡單原理是生成多個分類器/模型,各自獨立地學(xué)習(xí)和作出預(yù)測。這些預(yù)測最后結(jié)合成單預(yù)測,因此優(yōu)于任何一個單分類的做出預(yù)測。

人工智能之隨機森林(RF)

隨機森林的構(gòu)建過程:

假設(shè)N表示訓(xùn)練用例(樣本)個數(shù),M表示特征數(shù)目,隨機森林的構(gòu)建過程如下:

1)  輸入特征數(shù)目m,用于確定決策樹上一個節(jié)點的決策結(jié)果;其中m應(yīng)遠小于M。

2)  從N個訓(xùn)練用例(樣本)中以有放回抽樣的方式,取樣N次,形成一個訓(xùn)練集,并用未抽到的用例(樣本)作預(yù)測,評估其誤差。

3)  對于每一個節(jié)點,隨機選擇m個特征,決策樹上每個節(jié)點的決定都是基于這些特征確定的。根據(jù)m個特征,計算其最佳的分裂方式。

4)  每棵樹都會完整成長而不會剪枝,這有可能在建完一棵正常樹狀分類器后會被采用。

5)  重復(fù)上述步驟,構(gòu)建另外一棵棵決策樹,直到達到預(yù)定數(shù)目的一群決策樹為止,即構(gòu)建好了隨機森林。

人工智能之隨機森林(RF)

其中,預(yù)選變量個數(shù)(m)和隨機森林中樹的個數(shù)是重要參數(shù),對系統(tǒng)的調(diào)優(yōu)非常關(guān)鍵。這些參數(shù)在調(diào)節(jié)隨機森林模型的準(zhǔn)確性方面也起著至關(guān)重要的作用。科學(xué)地使用這些指標(biāo),將能顯著的提高隨機森林模型工作效率

下一篇: PLC、DCS、FCS三大控

上一篇: 索爾維全系列Solef?PV

推薦產(chǎn)品

更多